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ABSTRACT 

 
 Bacterial chromosomes may contain up to 20% phage DNA that encodes diverse proteins ranging 

from those for photosynthesis to those for autoimmunity; hence, phages contribute greatly to the 

metabolic potential of pathogens. Active prophages carrying genes encoding virulence factors and 5 

antibiotic resistance can be excised from the host chromosome to form active phages and are 

transmissible among different bacterial hosts upon SOS responses. Cryptic prophages are artifacts of 

mutagenesis in which lysogenic phage are captured in the bacterial chromosome: they may excise but 

they do not form active phage particles or lyse their captors. Hence, cryptic prophages are relatively 

permanent reservoirs of genes, many of which benefit pathogens, in ways we are just beginning to discern. 10 

Here we explore the role of active prophage- and cryptic prophage-derived proteins in terms of (i) 

virulence, (ii) antibiotic resistance, and (iii) antibiotic tolerance; antibiotic tolerance occurs as a result of 

the non-heritable phenotype of dormancy which is a result of activation of toxins of toxin/antitoxin loci 

that are frequently encoded in cryptic prophages. Therefore, cryptic prophages are promising targets for 

drug development.   15 
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INTRODUCTION 

Bacteriophages and bacteria are the most abundant life forms on Earth. They also interact frequently, 

and each phage infection has the potential to introduce new genetic material into the bacterial host, 

thereby driving the evolution of bacteria. The introduction of novel genes by phages into the bacterial host 20 

can confer beneficial phenotypes that enable the exploitation of competitive environments (Canchaya et al 

2003, Lawrence and Ochman 1998, Penadés et al 2015). For example, marine bacteriophage encode 

photosynthesis genes which may provide relief from intense sunlight in oceans for the phage and host 

(Mann et al 2003), as well as encode adaptive bacterial immune systems to provide immunity from 

competing phage known as clustered regularly interspaced short palindromic repeats 25 

(CRISPR)/CRISPR-associated (Cas) systems (Bellas et al 2015). 

Among the beneficial genes, phages provide DNA for virulence, resistance, and tolerance to 

antibiotics as three major factors for pathogens during infection. Resistance involves genetic mutations 

that allow for growth in the presence of antibiotics whereas tolerance involves metabolic dormancy from 

the activation of toxins of toxin/antitoxin (TA) systems that allows pathogens to sleep through a course of 30 

antibiotic treatment (Wood 2016).   

Treating pathogenic bacteria that evade antibiotics has become a global issue. This review will focus 

on the virulence, resistance, and tolerance genes carried by prophages, the antibiotics or other chemicals 

that can trigger the spread of these genes by prophage excision/integration, and also some preventative 

strategies to treat pathogens by targeting prophages. We also emphasize ways to avoid the adverse effects 35 

of triggering virulence dissemination by prophages.  

Prophages are reservoirs of virulence genes 

Bacteriophages provide one of the most efficient vehicles for moving DNA sequences (their own and 

the host’s DNA by mistake), via transduction, between bacterial cells. Horizontal transfer of genetic 

information by phages is much more prevalent than previously thought, and the environment plays a 40 

crucial role in the phage-mediated transfer of virulence genes (Penadés et al 2015). The relatively high 

numbers of phage (1030 phage and approximate ratio of 10 phage to each bacterium) leads to frequent 

lytic and lysogenic phage infections (1025 infections/sec) (Chibani-Chennoufi et al 2004). Unlike lytic 

phages, temperate phages are integrated into the bacterial genome and maintain a long-term lysogenic 
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relationship with their hosts (Figure 1). Lysogeny has a unique role within the bacterium-phage arms race 45 

in that it favors the development of a symbiotic relationship by providing an ecological window for the 

evolution of mutually-beneficial functions (Feiner et al 2015). Hence, these frequent phage infections 

provide ample opportunity to affect virulence. 

There are major differences both between and within different bacterial species in their ability to 

cause infection. Opportunistic and pathogenic bacterial species include Escherichia coli, Vibrio cholerae, 50 

Pseudomonas aeruginosa, Listeria spp., Salmonella enterica, Enterococcus faecalis, Streptococcus spp., 

and Staphylococcus spp. A major driving force in the emergence and evolution of pathogenic isolates is 

the horizontal transfer and acquisition of virulence factors. Several mobile genetic elements (insertion 

sequences, plasmids, bacteriophages, and pathogenicity islands) have been implicated in the horizontal 

transfer of virulence genes; one of the most significant groups is the bacteriophages (reviewed in 55 

(Hastings et al 2004)). 

Lysogenic conversion by prophages encoding toxins and other virulence determinants is the most 

ostensible contribution to bacterial pathogenesis (Brussow et al 2004). Many diseases are caused by  

toxins that are encoded by phages such as diphtheria, cholera, dysentery, botulism, food poisoning, 

scalded skin syndrome, necrotizing pneumonia or scarlet fever (Hacker and Kaper 2000). Among these, 60 

exotoxin production such as scarlatinal toxin, cholera toxin and Shiga toxin is the among the best 

documented virulence factors (Wagner and Waldor 2002). Bacteriophages can also alter host physiology 

to increase virulence at different stages of infection, including bacterial adhesion, colonization, invasion, 

resistance to host immune defenses, and transmissibility among human host (as reviewed by (Wagner and 

Waldor 2002)).  65 

The contribution of phages to pathogenicity was first discovered in streptococci in 1927 when it was 

shown that nontoxic streptococci acquired the ability to produce scarlatinal toxin through the phages 

released by the toxic streptococci (Frobisher and Brown 1927). In the 1950’s, toxin-encoding 

bacteriophages of Corynebacterium diphtheria further linked phages to bacterial pathogenicity (Barksdale 

and Arden 1974, Freeman 1951, Groman 1953).  70 

The cholera toxin of Vibrio cholerae illustrates well a case of how multiple phages contribute to 

bacterial pathogenicity (Brüssow and Hendrix 2002, Davis et al 2000, Karaolis et al 1998, Karaolis et al 
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1999, Waldor and Mekalanos 1996). Shiga toxin (Stx) is present in Shigella dysenteriae type 1 and shiga 

toxin producing E. coli (STEC). Two major classes of Stx are found in STEC, Stx1 and Stx2. The stx 

genes in E. coli strains are the central contributors to the virulence of enterohemorrhagic E. coli (EHEC), 75 

and EHEC infection can cause bloody diarrhea and can lead to hemolytic anemia, thrombocytopenia, 

renal failure, and even to death (Kaper et al 2004). Stx in E. coli O157:H7 is encoded as a late gene 

product by temperate bacteriophage integrated into the chromosome. Phage late genes, including stx, are 

silent in the lysogenic state, and Shiga toxin (Stx) production depends on the activation of the Stx 

prophage. Stress signals, including some induced by antibiotics, trigger the phage to enter the lytic cycle, 80 

and phage replication and Stx production occur concurrently (Kaper et al 2004).  

Prophage also play a role in the virulence of Pseudomonas aeruginosa. P. aeruginosa is an important 

opportunistic pathogen with a broad host range (plants, invertebrates, and vertebrates) (Palleroni 1984), 

and P. aeruginosa is the most common cause of chronic lung infections in cystic fibrosis (CF) patients 

(Lyczak et al 2002). The Pf4 prophage is essential for several stages of the P. aeruginosa biofilm life 85 

cycle, and it significantly contributes to its virulence in vivo (Mai-Prochnow et al 2004, Rice et al 2009).  

Salmonella enterica serovar Typhimurium harbors two functional prophages, Gifsy-1 and Gifsy-2  

that contain virulence genes (Figueroa-Bossi and Bossi 1999). Prophage Gifsy-2 carries the sodC gene for 

a periplasmic [Cu, Zn]-superoxide dismutase involved with the defense against killing by macrophages 

(Farrant et al 1997). The removal of both prophages leads to a significant attenuation of virulence, and the 90 

curing bacteria for the Gifsy-2 prophage significantly reduces the ability of S. enterica serovar 

Typhimurium to establish a systemic infection in mice (Figueroa-Bossi and Bossi 1999).  

In Staphylococcus aureus, expression of the phage encoded sea, seg2, sek2 and sak toxins is greatly 

increased following prophage induction (Sumby and Waldor 2003). In S. aureus, tst, the gene that 

encodes toxic shock syndrome toxin, is carried by a 15 kb-long pathogenicity island (Hochhut and Waldor 95 

1999). Prophage and prophage-like elements are also the major sources of variation between the genomes 

from Streptococcus pyogenes strains involved in two distinct pathologies, wound infections and 

rheumatic fever. The prophages encode several secreted proteins involved in the human–bacterium 

interaction, including the scarlet fever toxin.  

The mammalian intestine is home to a dense community of bacteria and its associated bacteriophage, 100 
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which influence virulence. The Gram-positive bacterium Enterococcus faecalis is a natural inhabitant of 

the mammalian gastrointestinal tract and is commonly found in soil, sewage, water, and food, frequently 

through fecal contamination (Matos RC 2013). E. faecalis is an opportunistic pathogen that is a major 

cause of urinary tract infections, bacteremia and infective endocarditis, and E. faecalis V583 harbors a 

composite phage derived from two distinct chromosomally-encoded prophage elements. One prophage 105 

encodes the structural genes necessary for phage particle production and the other prophage is required 

for phage infection of susceptible host bacteria. E. faecalis V583 uses phage particles to establish and 

maintain dominance of its intestinal niche in the presence of closely-related competing strains. Recent 

studies of the human fecal virome show that temperate rather than lytic phages are long-term contributors 

to the microbial host phenotype through provision of adaptive genes (Reyes et al 2010). 110 

Prophages are reservoirs of antibiotic resistance genes 

Many microorganisms produce secondary metabolites with antimicrobial activities and release them 

into their natural habitats. These antibiotic-producing microorganisms are resistant to the antibiotics they 

produce, but for the non-resistant bacteria, they need to develop resistance mechanisms to ensure survival 

in these environments (Muniesa et al 2013). The presence of antibiotics in the environment may exert 115 

long-term selective pressure for the emergence and horizontal transmission of resistance mechanisms in 

the non-producing microorganisms. In recent years, the explosive spread of antibiotic-resistance 

determinants among pathogenic, commensal, and environmental bacteria has reached a global dimension. 

Prophages not only encode toxin genes for human pathogens but also carry genes that enhance the fitness 

of the bacterial cell in ecological niches (Hendrix 2003). For examples, prophage contain genes that 120 

provide protection from attack by other phages, such as restriction-modification systems (Vasu and 

Nagaraja 2013) and CRISPR/Cas systems (Deveau et al 2010). Growing evidence shows that phages also 

carry or transfer genes that participate in other cellular process such as inactivating antibiotics (Muniesa 

et al 2013). Erythromycin resistance methylases (Erm) confer resistance to three classes of 

clinically-important antibiotics (the macrolides, the lincosamides, and the streptogramins B), and are 125 

widespread in Staphylococcus and other bacterial species (Seppälä et al 1998). For example, in 

Staphylococcus xylosus isolated from bovine mastitis milk, a novel macrolide-lincosamide-streptogramin 

B resistance gene is located on a 53-kb prophage that is site-specifically integrated into the S. xylosus 



Page 7 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

Wang and Wood 7 

chromosome (Wipf et al 2014). In Staphylococcus fleurettii, this gene is located in a genomic island 

which is site-specifically integrated into the housekeeping gene guaA, and exhibits the ability to 130 

circularize (Wipf et al 2015). Transfer of erythromycin resistance via prophages of clinically isolated 

Streptococcus pyogenes was suggested to be responsible for the emergence of streptococci with multiple 

resistances in the clinical environment (Hyder and Streifled 1978). P1 bacteriophages lysogenize bacteria 

as independent plasmid-like elements, and a recent report shows that P1-like bacteriophage carrying 

SHV-2 extended-spectrum β-lactamase is present in clinical strains of E. coli (Billard-Pomares et al 2014). 135 

Acquired resistance to β-lactam antibiotics is conferred principally by β-lactamases and penicillin-binding 

proteins (Livermore and Woodford 2006). Two β-lactamase genes and one gene encoding a 

penicillin-binding protein have been detected in the bacteriophage DNA fraction of sewage, river water, 

and fecal waste from farmed animals, suggesting that bacteriophages can be environmental vectors for the 

horizontal transfer of antibiotic resistance genes (Colomer-Lluch and Muniesa 2011). Quinolone 140 

antibiotic resistance genes (qnrA and qnrS) have also been found in phage DNA isolated from urban 

wastewater and animal wastewater, suggesting that spreading genetic information via bacteriophages has 

gained importance in the resistance dissemination in environments (Colomer-Lluch et al 2014).  

Prophages may also become trapped in the host genome due to mutation (Canchaya et al 2003); these 

inactive prophage elements are referred to as cryptic prophages (Figure 1), and they also play a role in 145 

antibiotic resistance and tolerance. For example, the E. coli K-12 genome has gained 1,600 kb of novel 

DNA (18%) since its divergence from Salmonella sp. 100 million years ago (Lawrence and Ochman 

1998), and contains one active Lambda prophage and nine cryptic prophages (Blattner et al 1997). At 

least cryptic prophage rac is a phage fossil that is present in other E. coli strains having been acquired 

over 4.5 million years ago, which appears more ancient than the Lambda prophage (Perna et al 2001). 150 

These cryptic prophage are not inactive DNA remnants generated in the course of host evolution but are 

important for host fitness in terms of both antibiotic and stress resistance (Wang et al 2010). For example, 

by deleting all the cryptic prophage genes in E. coli (166 kb), it has been shown that that cryptic 

prophages contribute significantly to resistance to sub-lethal concentrations of quinolone and β-lactam 

antibiotics and that the prophages are beneficial for withstanding osmotic, oxidative, and acid stresses 155 

(Wang et al 2010). 
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Specifically, the nine cryptic prophages in E. coli K-12 contain 165 putative genes, and 50 of them 

are related to antibiotic resistance either by transcriptome studies or in whole genome screening tests 

(Kohanski et al 2007, Peter et al 2004, Walker et al 2004). As shown in Table 1, 17 cryptic prophage 

genes affect antibiotic resistance by survival tests or metabolic activity assays using deletion strains or 160 

using plasmids to express these prophage genes. In particular, the products of kilR in rac prophage and 

dicB in Qin prophage are responsible for inhibiting cell division and are important for resistance to 

nalidixic acid (a quinolone) and azlocillin (a β-lactam) (Wang et al 2010). YdaC encoded by rac was 

identified in the screen for antibiotic resistance using pooled plasmids from the ASKA library that showed 

increased resistance to erythromycin (Soo et al 2011), and we have confirmed this phentotype in surivial 165 

assays using two different constructs to express ydaC (unpulished data). Rac-like prophage is 

transmissible to other E. coli strains (Asadulghani et al 2009), thus enabling it to spread these resistance 

genes. 

In Gram-negative bacteria, antimicrobial agents must traverse both the outer membrane and plasma 

membrane to gain entry into the cell. One of many effective cellular resistance strategies involves the 170 

extrusion of the antimicrobial from the cell by transporters, which may be anchored in the inner 

membrane or reside in the trans-membrane space and which are also encoded by cryptic prophage. For 

example, the transporter ethidium multidrug resistance protein E (EmrE) in E. coli is a proton-dependent 

secondary transporter from cryptic prophage DLP12 (Yerushalmi et al 1995). EmrE confers resistance to 

positively charged hydrophobic antibiotics such as tetracycline by actively expelling the drug (Viveiros et 175 

al 2005). Outer membrane protease OmpT from prophage DLP12 has been shown to increase resistance 

to streptomycin and chlortetracycline (Li et al 2008). The impact of OmpT on E. coli resistance to urinary 

cationic peptides was investigated by testing an ompT knockout strain, and OmpT may help the host 

persist longer in the urinary tract by enabling it to resist the antimicrobial activity of urinary cationic 

peptides (Hui et al 2010). 180 

In other species, many resistance genes are located on genomic islands, and there are several 

common features shared by cryptic prophage and genomic islands. Both of them harbor phage integrase 

or excisionase that directly regulate the integration or excision of these mobile elements. Another 

common feature is the presence of two perfect or near-perfect repeats at the borders of these mobile 



Page 9 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

Wang and Wood 9 

genetic elements, and they are used as site-specific recombination events during excision. P4 or P4-like 185 

integrase genes are normally adjacent to the tRNAs or tRNA modification genes, which serve as the 

phage attachments (Williams 2002). Mobile genetic elements that carry P4-like integrases are termed 

cryptic prophages in E. coli (e.g. CP4-6, CP4-44, CP4-57) but often are referred to as genomic islands or 

pathogenicity islands in other species such as Salmonella and Shigella. For example, the genomic island 

that carries resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline in 190 

Salmonella enterica Typhymurium phagetype DT104 is flanked by a near perfect 18-bp repeat and 

inserted in the trmE gene encoding a tRNA modification enzyme (Cabedo et al 1999). The resistance 

locus pathogenicity island in Shigella spp. mediates resistance to streptomycin, ampicillin, 

chloramphenicol, and tetracycline, and it can be excised from the chromosome via site-specific 

recombination mediated by the P4-related integrase (Turner et al 2004). We have shown in E. coli that 195 

excisionase AlpA in CP4-57 can lead to a complete removal of CP4-57 prophage (Wang et al 2009) and 

that excisionase XisR in rac and a modified host protein H-NS can lead to a complete removal of rac 

prophage (Hong et al 2010, Liu et al 2015). Therefore, the global dissemination of multiple antibiotic 

resistances harbored by mobile genetic islands in pathogenic bacteria seems to be closely related to the 

site-specific recombination events.  200 

Prophages are reservoirs of antibiotic tolerance genes 

In many cases, TA loci are closely linked to mobile genetic elements. For example, V. cholera has 13 

TA pairs and all of them are clustered in the megaintegron on ChrII, the smaller of its two chromosomes 

(Budde et al 2007, Gerdes et al 2005). Also, type I, type II and type IV TA loci have been identified in the 

nine cryptic prophages of E. coli (Table 1), indicating TAs are overrepresented in E. coli prophages 205 

(~8%). The presence of these toxins are important in that activation of all toxins to date leads to a 

dramatic increase in persister cells (Chowdhury et al 2016a, Wood 2016). So these cryptic prophages not 

only provide the means for antibiotic resistance, but they also provide the means to make the cells 

dormant and more persistent.  

The type I toxin/antitoxin pair RalR/RalA in E. coli rac cryptic prophage increases resistance to 210 

broad-spectrum fosfomycin (Guo et al 2014), and the underlying mechanism remains to be determined. 

RelE toxin of Type II TA RelB/RelE in E. coli prophage Qin is a sequence-specific endoribonulease 
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which blocks translation by cleavage of mRNAs (Christensen et al 2001, Neubauer et al 2009). Critically, 

RelE leads to high persister cell formation in the presence of high concentraions of ciprofloxacin, 

ampicillin, and tobramycin (Keren et al 2004, Koga et al 2011). Also, the toxin of the type II TA system 215 

RnlA/RnlB of the E. coli cryptic prophage CP4-57 causes inhibition of cell growth and rapid degradation 

of cellular mRNAs. The toxin of first recognized type IV TA pair, CbtA/CbeA in E. coli cryptic prophage 

CP4-44, not only inhibits cell growth, but alters cell shape by inhibiting the polymerization of 

cytoskeletal proteins FtsZ and MreB via direct protein-protein interaction (Masuda et al 2012). Moreover, 

this TA pair has related to resistance to norfloxacin, novobiocin, and spectinomycin (Tan et al 2011) 220 

(Kohanski et al 2007, Masuda et al 2012). The only other two homologous TA loci of CbtA/CbeA also 

reside in prophages, YkfL/YafW on E. coli cryptic prophage CP4-6 and YpjF/YfjZ on E. coli cryptic 

prophage CP4-57 (Brown and Shaw 2003). Interestingly, YkfL/YafW is related to the resistance to 

bacteriocin colicin E3 (Walker et al 2004), and YpjF/YfjZ is related to resistance to novobiocin (Peter et 

al 2004). One of the most striking features of these P4-like cryptic prophages in E. coli is that they are 225 

pervasively mosaic, with different segments seem to have distinct evolutionary histories (Brussow et al 

2004). The presence of three homologous TA loci in three P4-like prophages (CP4-6, CP4-44, and CP4-57) 

suggests that horizontal genetic exchange plays a dominant role in shaping these genome architectures. 

Antibiotics trigger prophage excision 

UV irradiation and mitomycin C (MMC) are classical agents that can efficiently induce prophage 230 

excision in lysogenic bacteria (Otsuji et al 1959) . The SOS response is induced by UV radiation or MMC, 

and it can also be activated by antibiotics that inhibit DNA replication or inhibit DNA gyrase activities to 

produce single-strand DNA (ssDNA). During the course of repair of DNA damage, ssDNA is produced 

(e.g., DNA crosslinks produced as a result of MMC). Trimethoprim (dihydrofolate reductase inhibitor) is 

an example of an SOS-inducing antibiotic that inhibits DNA replication (Lewin and Amyes 1991). 235 

Fluoroquinolones, broad-spectrum antibiotics that inhibit bacterial DNA gyrase and topoisomerase 

activity, also lead to SOS responses by generating DNA double-strand breaks (Drlica and Zhao 1997).  

The genes coding for Shiga toxins are silent in lysogenic bacteria, and prophage induction is 

necessary for their efficient expression and toxin production. Both toxins are usually encoded in the 

genomes of bacteriophages (Stx phages), and they can lysogenize E. coli strains, thereby allowing a 240 
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mechanism for toxin dissemination via transfer of bacteriophages (Huang et al 1987, O'Brien et al 1984). 

Shiga toxin-producing EHEC (O157 Sakai) possesses 18 prophages that encode numerous genes related 

to EHEC virulence, including those for Shiga toxins and two other potent cytotoxins (Hayashi et al 2001). 

Nine out of the 18 prophages can be excised to form a circle by MMC-mediated induction, and three of 

them are transferable to the non-pathogenic commensal E. coli strain K-12 and stably maintained in the 245 

new host (Asadulghani et al 2009). The induction of Shiga toxin-converting prophages in EHEC also 

occurs in the presence of norfloxacin and under oxidative stress (Łoś et al 2010). Hence, these cryptic 

prophages have a high potential for disseminating virulence-related genes and other genetic traits to other 

bacteria under stress conditions, and stress activates pathogenicity. 

Increased virulence caused by increased Stx production has been related to stx prophage induction 250 

both in vitro (Mühldorfer et al 1996) and in vivo (Zhang et al 2000). In particular, clinically-used 

antibiotics known to trigger the SOS response, including ciprofloxacin, have been shown to enhance Stx 

production (Mühldorfer et al 1996). The SOS response induced by MMC or fluoroquinolones causes 

enhanced intra-intestinal transfer of Stx2 prophages in vivo (Zhang et al 2000). Prophages of E. faecalis 

V583 excise from the bacterial chromosome in the presence of a fluoroquinolone, and are able to produce 255 

active phage progeny (Matos RC 2013). The S. typhimurium functional prophages, Gifsy-1 and Gifsy-2, 

can be induced by exposing bacteria to hydrogen peroxide (Figueroa-Bossi and Bossi 1999). Recent 

studies have demonstrated that oxidative stress conditions may occur during colonization of the human 

intestine by enteric bacteria (Kumar et al., 2007). Moreover, earlier studies on a clinical isolate of EHEC 

suggested that hydrogen peroxide produced by human neutrophils, may increase the production of Stx2 260 

(Wagner et al 2001).  

Carbadox is a quinoxaline-di-N-oxide, and exposure of Salmonella sp. to carbadox induces prophages 

that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts (Stanton et al 

2008). Carbadox frequently induces generalized transducing phages in multidrug-resistant phage type 

DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included 265 

antibiotic resistance genes (Brunelle B W 2014). Metagenomics approaches were used to evaluate the 

effect of two antibiotics in feed (carbadox and ASP250 [chlortetracycline, sulfamethazine, and penicillin]) 

on swine intestinal phage metagenomes (viromes), and the abundance of phage integrase-encoding genes 
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was significantly increased in the viromes of medicated swine over that in the viromes of non-medicated 

swine (Allen et al 2011). Prophage-like VSH-1 was detected in Brachyspira hyodysenteriae cultures 270 

treated with mitomycin C, carbadox, metronidazole, and hydrogen peroxide. Carbadox- and 

metronidazole-induced VSH-1 particles transmitted tylosin and chloramphenicol resistance determinants 

between B. hyodysenteriae strains (Stanton et al 2008). 

As previously described for SOS induction by MMC, fluoroquinolone antibiotics, and trimethoprim 

(Goerke et al 2006), β-lactams are also capable of triggering prophage induction in S. aureus lysogens. 275 

β-lactam-mediated phage induction also resulted in replication and high-frequency transfer of the 

staphylococcal pathogenicity islands, showing that such antibiotics may have the unintended consequence 

of promoting the spread of bacterial virulence factors (Maiques et al 2006). β-lactam antibiotics are 

extracellular stimuli of the SOS response in S. aureus as well as in E. coli and demonstrate another case 

for horizontal dissemination of virulence factors. 280 

Integrating conjugative elements (ICE) can also carry antibiotic resistance genes and recruit SOS 

responses to mobilize themselves from one bacterial genome to another by cell-to-cell contact (Hastings 

et al 2004). Therapeutic agents such as ciprofloxacin and MMC promote the spread of antibiotic 

resistance genes carried on ICE in V. cholerae among a variety of Gram-negative species including E. coli 

(Beaber et al 2004, Hochhut and Waldor 1999).  285 

Drugs and phage 

Since MMC and other antibiotics trigger SOS responses that may contribute the augmentation of 

toxin production by inducing Stx prophage induction, the treatment of infections using antibiotics that 

result in DNA damage and phage induction may lead to unexpected adverse consequences. Stimulation of 

gene transfer following bacterial exposure to fluoroquinolones should be considered an adverse effect, 290 

and clinical decisions regarding antibiotic selection for infectious disease therapy should include this 

potential risk. Antibiotics that inhibit protein synthesis, such as chloramphenicol, tetracycline and 

streptomycin, do not induce SOS responses, and neither do agents that act upon the outer membrane 

(Hastings et al 2004). The use of fosfomycin which is an inhibitor of cell-wall synthesis did not cause the 

intraintestinal transfer of Stx2 prophage transfer in mice (Zhang et al 2000), and effectively reduced the 295 

risks of hemolytic-uremic syndrome (Takeda 1998). Thus, efforts should be made in developing new 
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compounds with antimicrobial activities targeting more specific cellular functions/components rather than 

DNA replication. For example, lassomycin is a newly identified antibiotic that exhibits potent bactericidal 

activity against both growing and dormant mycobacteria. It binds to a highly acidic region of the ClpC1 

ATPase complex and markedly stimulates its ATPase activity without stimulating ClpP1P2-catalyzed 300 

protein breakdown, which is essential for viability of mycobacteria (Gavrish et al 2014). Another newly 

identified antibiotic, teixobactin, from uncultured bacteria, inhibits bacterial cell wall synthesis by binding 

to a highly conserved motif of lipid II (precursor of peptidoglycan) and lipid III (precursor of cell wall 

teichoic acid) (Ling et al 2015). 

In contrast to active prophages that are triggered to excise by the DNA repair (SOS) response, 305 

cryptic prophages usually stay as stable residents on the host chromosome under adverse growing 

conditions including during the SOS response. For example, for the nine prophages in E. coli K-12, e14 

was the only inducible prophage upon MMC treatment (Wang et al 2010). Among the eight cryptic 

prophages that do not excise with MMC, two prophages were induced to excise during E. coli biofilm 

formation, thus providing benefits for the population by creating a subpopulation of prophage-excised 310 

cells with different biofilm-related phenotypes (Liu et al 2015, Wang et al 2009). Furthermore, Pf4 

prophage excision has been linked to both cell death and lysis for P. aeruginosa cells in biofilms as 

filamentous-like prophage excision increases diversity in dispersing cells as well as impacts biofilm 

architecture and virulence (Rice et al 2009, Webb et al 2003). It is well established that biofilm provides 

increased tolerance towards antibiotic treatment (Costerton et al 1995), thus prophage can also indirectly 315 

contribute to antibiotic tolerance by promoting biofilm formation.    

Moreover, cryptic prophages carrying TA systems can be activated during stress (Yamaguchi and 

Inouye 2011). During oxidative stress and starvation, proteases such as Lon and ClpXP degrade unstable 

antitoxins and releases free toxins (Christensen et al 2004, Maisonneuve et al 2013, Wang et al 2011, 

Wang and Wood 2011). It has been suggested that activating toxins by deactivating antitoxins of TA 320 

systems would be beneficial in terms fighting pathogens (Chan et al 2015); however, this approach is 

short-sighted in that this approach will indubitably lead to an increase in the numbers of pathogen 

persister cells (Shapiro 2013) since proteins that reduce growth such as toxins increase persistence 

(Chowdhury et al 2016a). Perhaps the best approach then, to target pathogens that utilize TA systems like 
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those encoded by phages to form persister cells, is to utilize a combination of drugs with one used to kill 325 

growing cells and another one to kill persister cells. Examples of this approach of targeting both growing 

and dormant cells include combining rifampicin with the acyldepsipeptide ADEP4 (Conlon et al 2013) 

and by combining cefoperazone and doxycycline with daptomycin (Feng et al 2015). Other possible 

approaches include using either mitomycin C (Kwan et al 2015) (for infections where it does not lead to 

extracellular toxin production like Shiga toxins) or cisplatin (Chowdhury et al 2016b) to kill 330 

simultaneously both actively growing pathogens as well as their persister cells; both compounds kill 

active and persister cells by crosslinking their DNA, both have been shown to be broadly effective against 

pathogens such as P. aeruginosa, EHEC, S. aureus, and Borrelia burgdorferi (Chowdhury et al 2016b, 

Kwan et al 2015, Sharma et al 2015), and both are approved by the Food and Drug Administration for 

human use. 335 

As an interesting use of TA systems from cryptic prophage as drugs, toxin RelE from cryptic 

prophage Qin causes apoptosis when it is produced in a human osteosarcoma cell line (Yamamoto et al 

2002). Unfortunately, although toxins of TA systems have many of the same targets as antibiotics, they 

are active only intracellularly; i.e., they are not effective when added extracellularly but must be 

translocated to the cell interior. For example, the Hok toxin of the Hok/Sok TA system is not active with 340 

Gram positive or Gram negative bacteria unless it is electroporated into the cell (Pecota et al 2003).  

Also, other non-TA components of prophage have potential as drugs. For example, recent progress 

has been made in HIV-1 therapy by directed evolution of a site specific recombinase that can recognize a 

34-bp sequence flanking the majority of the integrated provirus HIV-1; this evolved recombinase can 

efficiently and precisely remove the integrated provirus from infected cells and is efficacious on clinical 345 

HIV-1 isolates in vitro and in vivo (Karpinski et al 2016). Thus, targeting the excisionase of prophage may 

be a promising approach for treating both viral and bacterial infections. 

PERSPECTIVES 

There is growing need to understand phage-host interactions and bacterial-host interactions in 

complex systems, such as among gut microbiota. Phages can regulate the microbiome using different 350 

strategies, such as killing competing bacteria to allow lysogenic bacteria to thrive in niches with limited 

nutrients, by encoding toxins or virulence factors that increase pathogenicity, by encoding genes that 
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increase antibiotic tolerance, and by functioning as vehicles for the horizontal transfer of genes among 

different species of bacteria. Clearly, the spread of antibiotic resistance among pathogenic bacteria has 

become a serious global issue for public health, and the role of phage in this process should not be 355 

neglected. Increasing evidence has shown that prophages of commensal and environmental bacteria are 

also reservoirs of antibiotic resistance and tolerance, and their roles in in the dissemination of resistance 

and tolerance to pathogenic bacteria through horizontal gene transfer should be recognized. Prophages 

can also carry new families of virulence, resistance and tolerance genes. Prophages or prophage elements 

can be identified and annotated in the sequenced bacterial genomes through web servers such as PHAST 360 

(Zhou et al 2011), Prophage Finder (Bose and Barber 2006), IslandViewer (Dhillon et al 2015), and 

MobilomerFINDER (Ou et al 2007). In addition, the virome sequences that are present in publicly 

available databases (e.g., MG-RAST (Keegan KP et al 2016)) can also be mined for the presence of 

virulence, resistance and tolerance genes insides phages and prophages.  

The human gut also contains large amounts of free viral particles, most of them bacteriophages 365 

probably released after spontaneous induction of prophages of lysogenic bacteria in the gut (Breitbart et al 

2003). A recent study by Gordon’s group shows that temperate phages are prominent in fecal microbiota, 

and an in vivo mice study demonstrated the prophage induction in a fecal community occurs upon exiting 

the host (Penadés et al 2015). Moreover, host-associated bacteria often encounter various host-related 

stresses such as nutritional deprivation, oxidants, temperature upshifts, and low pH which can also trigger 370 

prophage excision. Therefore, the human microbiome and environmental microbiome projects that have 

been initiated throughout the world (Dubilier et al 2015), should strive to identify prophages and 

functional genes embedded in the prophages, given the prominent role of phage in virulence, antibiotic 

resistance, and antibiotic tolerance. 
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Table 1. Summary of genes that participate in antibiotic resistance or tolerance in the cryptic prophages of 

E. coli K-12.  

Gene name Prophage Function Antibiotics tested References 

ydaC Rac Putative double-strand break 

reduction protein 

Erythromycin (Soo et al 2011) 

ralR Rac DNase, toxin of type I TA pair 

RalR/RalA  

Fosfomycin (Guo et al 2014) 

kilR Rac Toxin, Ftsz inhibitor Novobiocin; Bicyclomycin; 

Azlocillin 

(Peter et al 2004, Sabina et al 2003) 

relE Qin Toxin of TA pair RelE/RelB, 

Sequence-specific 

endoribonuclease 

Cefotaxime; Ofloxacin; 

Tobramycin; Ciprofloxacin; 

Ampicillin 

(Gotfredsen and Gerdes 1998, Keren 

et al 2004, Maisonneuve et al 2011) 

dicB Qin Control of cell division Azlocillin (Wang et al 2010) 

hokD Qin Small toxic membrane 

polypeptide 

Kanamycin; Novobiocin (Kohanski et al 2007, Peter et al 

2004) 

emrE DLP12 Multidrug resistance pump Methyl viologen; Tetracycline; 

Ethidium; 

Tetraphenylphosphonium 

(Morimyo et al 1992, Yerushalmi et 

al 1995),  

ompT DLP12 Outer membrane protease Streptomycin; 

Chlortetracycline  

(Hui et al 2010, Li et al 2008) 

yfdO CPS-53  Uncharacterized protein Lidocane; Nalidixic acid (Soo et al 2011) 

rnlA CP4-57 Toxin of RnlA/RnlB TA pair Gentamicin (Koga et al 2011)  

yfiZ CP4-57 Antitoxin of putative TA pair 

Ypjf-Yfjz 

Novobiocin (Peter et al 2004) 

ypjF CP4-57 Toxin of putative TA pair 

Ypjf-Yfjz 

Novobiocin (Peter et al 2004) 

yeeU CP4-44 Antitoxin of TA pair Yeeu/Yeev, 

cytoskeleton 

bundling-enhancing factor A 

Norfloxacin; Novobiocin (Masuda et al 2012, Sabina et al 

2003) 

yeeV CP4-4 Toxin of TA pair YeeU/YeeV, 

cytoskeleton binding toxin 

Norfloxacin; Spectinomycin (Masuda et al 2012) 

ykfI CP4-6 Toxin of putative TA pair 

YkfI-YafW 

Colicin E3 

 

(Walker et al 2004) 

yafW CP4-6 Antitoxin of putative TA pair 

YkfI-YafW 

Colicin E3; Kasugamycin (Walker et al 2004)  

yagE CP4-6 2-keto-3-deoxy gluconate 

(KDG) aldolase 

Novobiocin; Norfloxacin; 

Ampicillin; Streptomycin 

(Bhaskar V et al 2011, Peter et al 

2004) 
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Figure 1.  Different types of phages and prophages. Genes in cryptic prophages are abbreviated as int: 

integrase, xis: excisionase, RM: Restriction-modification system, and TA: Toxin-antitoxin 

systems. 

 

 


